What does this mean? -(x_ 0 +x_ 1) + A = -x_ 1 + (-x_ 0 +A) by associativity.
Ah! But we have seen this before!
We needed x_ 1 \in \{ x: -x + (-x_ 0 +A) \in p\}, so we needed \{ x: -x + (-x_ 0 +A) \in p\}\in p!
But that's ok!! -x_ 0 + A \in p & \forall B\in p: \{x : -x+B \in p \} \in p!
How do we get to the end?
Inductively, assume we have x_ 0,\ldots, x_ n with FS(x_ 0,\ldots, x_ n) \subseteq Aand\bigcap_ {z \in FS(x_ 0,\ldots,x_ n)} -z + A \in p.
Pick x_ {n+1} from( \bigcap_ {z \in FS(x_ 0,\ldots,x_ n)} -z + A ) \cap A \cap \{ x: -x+ (\bigcap_ {z \in FS(x_ 0,\ldots,x_ n)} -z + A) \in p\}
-- this intersection is in p!
Note that-x_ {n+1} + ( \bigcap_ {z \in FS(x_ 0,\ldots,x_ n)} -z + A \cap A)
= \bigcap_ {z \in FS(x_ 0,\ldots,x_ n)} -x_ {n+1} (-z + A) \cap -x_ {n+1} A \in p.
So\bigcap_ {z \in FS(x_ 0,\ldots,x_ {n+1})} -z + A =
\bigcap_ {z \in FS(x_ 0,\ldots,x_ n)} (-z + A) \cap \bigcap_ {z \in FS(x_ 0,\ldots,x_ n)} (-(z+x_ {n+1}) + A) \cap (-x_ {n+1} +A
which is in p -- as desired.
Question: Do "almost left-translation invariant" ultrafilters exist?
Glazer, ~1975: Yes of course! These are the idempotent ultrafilters! We know these exist since Ellis 1958.
What does this mean?
(\mathbb{N}, +) is a semigroup
\mathbb{N} is discrete, so \beta \mathbb{N}, the Stone-Čech compactification of \mathbb{N} exists, in fact \beta \mathbb{N} \cong the set of ultrafilters on \mathbb{N} with a topological basis \hat A = \{ p \in \beta \mathbb{N} : A \in p \} for A\subseteq \mathbb{N}.
\beta \mathbb{N} is compact (exactly by the Boolean Prime Ideal Theorem)
\beta \mathbb{N} is Hausdorff (p\neq q \Rightarrow \exists A\in p, B\in q: A\cap B = \emptyset).
\beta \mathbb{N}has a semigroup structure extending (\mathbb{N}, +)
From \beta (\mathbb{N} \times \mathbb{N}:
p,q \in \beta \mathbb{N}\mapsto p \otimes q \in \beta(\mathbb{N}^2)
try (A\times B)_ {A\in p, B\in q} -- not an ultrafilter
if you try to prove ultraness:
\bigcup_ {a\in A} \{a\} \times B_ a for some A\in p, all B_ a \in q
generates an ultrafilter!
Then p + q = + (p\otimes q)
i.e., generated by \{ \bigcup_ {a \in A} a + B_ a : A\in p, B_ a \in q\} [check: n+k = +(n \times k)]
Properties
\forall q\in \beta \mathbb{N}: \rho_ q: \beta \mathbb{N} \rightarrow \mathbb{N}, p \mapsto p+q is continuous.
Why? X\in p+q iff \exists A\in p \exists (B_ a)_ {a \in A} , B_ a \in q: \bigcup_ {a\in A} a+ B_ a \subseteq X iff \{a: -a + X \in q\} =: X^{-q} \in p.
But X^{-q} only depends on q!
associativity: check it -- use
\bigcup_ {a\in A} a+ (\bigcup_ {b\in B_ a} b + C_ b)= \bigcup_ {c\in \bigcup_ {a\in A} a+ (\bigcup_ {b\in B_ a} a+ b)} c + C_ c.
The first set is in p+(q+r), the second in (p+q)+r.
Now remember: what did Galvin need?
(\forall A \in p) \{ x: -x+A \in p\}\in p
I.e., A\in p \Rightarrow A^{-p} \in p \Rightarrow A \in p+p, so p \subseteq p+p
I.e. p+p = p (since ufs)