Red workbook, p6
Source
Transcript
-
Folgerung: Ann.
ex., . - Prop.
: zentral <=> ex prox. , unif. rek, - ["=>" wie Satz/Beweis; "<=" Setze
zentral]
- ["=>" wie Satz/Beweis; "<=" Setze
- Prop.
-
-
Wir wissen
- (a)
prox. <=> stimmen auf bel. langen Int. von ueberein - (b)
unif. rekurrent synd. syndetisch
- (a)
-
Fuer
: zentral unif. rek. und prox. $\chi_C $ - und
-
Also zentrale Mengen analytisch!
-
Frage: echt analytisch? SK: wahrscheinlich.
-
Notiz: Rand Oben: ?: Dieses DS in irgendeinem Sinn universell?
-
Notiz: gegenueberliegende Seite:
- anders: (offenbar ist) die eigentliche Def. dadurch verbessert, dass klar wird, dass Obermengen wieder zentral sind
- Frage: kann ich im selben DS bleiben, um die Def. fuer eine Obermenge zu verifizieren?
- orig/anders: Laesst sich die Konstruktion in
hinueberretten durch eine geeignete Abbildung?
- orig/anders: Laesst sich die Konstruktion in
partial Translation
-
Conclusion: Assume an identity
exists, . - (Side note: is this dynamical system universal in some sense?)
- Proposition.
: central <=> ex proximal , uniformly recurrent, - ["=>" as in the proof of the theorem; "<=" Let
central]
- ["=>" as in the proof of the theorem; "<=" Let
-
-
We know
- (a)
proximal <=> agree on arbitrarily long Intervals of - (b)
unif. recurrent syndetic syndetic
- (a)
-
For
: central unif. rec. and prox. $\chi_C $ - and
- and
-
So central Sets are analytic!
-
Question: properly analytic? Sabine Koppelberg: probably.
-
Note (across the page)
- to put it differenlty: this clearly improved the initial Definition as it is now clear that supersets of central sets are central.
- Question: can we stay in the same dynamical system to verify that supersets of a central set are central?
- to put it differently: can we find a map to transfer the constructions in
over to an arbitrary DS?
- to put it differently: can we find a map to transfer the constructions in
Notes
This is a curious (double) page. I don't know why Sabine Koppelberg thought it was important to add the observation that the set of central sets of
Open problems
- Is the set of central subsets of
properly analytic? (Sabine Koppelberg was apparently leaning towards "yes!".)