(b) => (a): seien g_e, C_e, \mathfrak{C} wie in (b).
Nimm p \in \beta S mit L := \beta S \cdot p \subseteq Y_{\mathfrak{C}} oBdA p\in K(\beta S).
\Rightarrow p\in L.
Fuer e \in [\mathfrak{B}]^{\lt \omega}: p \in \widehat{C_e} = \bigcup_{x\in g_e} \widehat{x^{-1} D_e}
\Rightarrow \exists x_e \in g_e: p \in \widehat{ x_e^{-1}D_e}.
((?) wieso eDe?) Nimm w\in \beta S mit S_e := \{ x_f : f \supseteq e, f \in [ \mathfrak{B}]^{\lt \omega} \} \underset{?}{\in} \omega (\forall e \in \beta S)
Setze q = w \cdot p \Rightarrow q \in \beta S \cdot p \subseteq K(\beta S) und
es ist \mathfrak{B} \subseteq q [B\in \mathfrak{B} zeige: B\in q = w\cdot p. Aber e:{B} \in [\mathfrak{B}]^{\omega}
D_e = B, S_e \in \omega; Fuer alle f\supseteq e: x_f \cdot p \in \widehat{D_f}
This page contains the proof of Theorem 3.4 of the previous part (I guess I should've included that yesterday). I can't really make much of it. It's the dull of writing up a new notion. But if you look closer, you might stumble over a few details (as I did when I took these notes). Writing this up just now I find the choice of w quite striking.